

OPERATIONAL ENERGY AND CLIMATE CHANGE MITIGATION

Optimizing DAF aviation fuel use:

- > improves our capability and readiness and
- > reduces greenhouse gas emissions (GHG)
- Aviation fuel and related transportation logistics are an inherent risk to the warfighter and play a critical role in lethality and mission success.
- DAF is the largest US Govt fuel consumer (45%).
 Aviation fuel accounts for 80% of DAF energy use.

How We're Optimizing Fuel Use:

Technology Solutions:

- Aerodynamics
- Weight Reduction
- Advanced Propulsion
- Engine Sustainment

Process Solutions:

- Planning Software
- Optimized Operations
- Efficient Flying
- Data Visibility

Optimizing Aviation Fuel Use Leads to:

IMPROVED

Combat Capability

INCREASED

Aircraft Lifespan

DECREASED

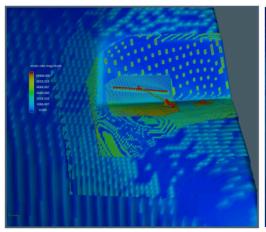
Aircraft Maintenance

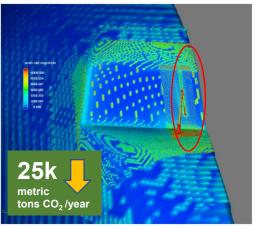
MORE

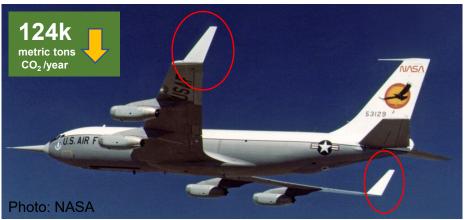
Training Opportunities

HIGH

Return-on-investment

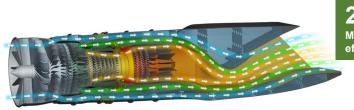

Jigsaw, a tanker planning tool, digitizes and streamlines aerial refueling planning, reducing fuel use by 180K gallons per week and preventing **46K metric tons** of **CO**₂ emissions annually.


Engine sustainment processes, like compressor blade coating (saves 185K metric tons of CO₂ / year), and engine foam, detergent, and water washing (saves 177K metric tons of CO₂ / year), prevent buildup of engine debris and residue, improves performance and allows the engine to run cooler and with fewer maintenance issues.


November 2021 continued

OPERATIONAL ENERGY AND CLIMATE CHANGE MITIGATION (continued)

Drag-reducing technologies, such as KC-135 vertical windshield wipers (*left*), KC-135 winglets (*center left*), and C-17 Microvanes (*center right*) can **reduce CO**₂ **emissions** by a combined **186k metric tons yearly**.



Future Possibilities

A Blended Wing Body aircraft (above) could be **30% more fuel efficient** than a tube and wing aircraft.

Adaptive engines on fighter aircraft will use a third stream of air to increase engine thrust during combat conditions, maximize fuel efficiency during cruise, and more than double power and thermal capacity (25% more fuel efficient overall).

25% More fuel efficient

