HomeProgramsEnergyOperational EnergyOE in Action

Aviation Data Collection Strategy

Fuel data is crucial to identifying and understanding operational inefficiencies in the Force. By collecting and analyzing fuel data from across all aircraft, the Air Force can measure its effectiveness, enable data-driven decisions, and better target opportunities to improve operations that deliver competitive advantages against adversaries.

In 2018, our office created the Operational Energy Data Collection Strategy to lay the foundation for collecting and storing aviation fuel use and associated mission execution data. The purpose of the Strategy is to set the Air Force on a course to collect aviation fuel data that is comprehensive, automated, high-resolution, and accurate. Implementing the Strategy informs operations, supports a resilient and innovative Air Force, and integrates aviation fuel data collection into a wider data and IT strategy across the Air Force and Department of Defense.

Line Operations Efficiency Analyses (LOEA)

Our office set up the Energy Analysis Task Force (EATF) to systematically visit Air Force bases around the country to observe actual training and mission flights, and speak with flight crews (to include operators and maintainers) about flight operations, practices, and aircraft requirements that have an impact on aviation fuel efficiency. The goal: to identify optimization best practices (and the challenges to implementing them) across each airframe, and produce a report that recommends which initiatives, processes, and technologies could have the greatest benefit to capability and readiness.

Known as a Line Operations Efficiency Analysis (LOEA), the team starts by targeting one airframe at a time and reviewing applicable publications and in-flight guides for that specific airframe. Then, in coordination with wing leadership, the team visits the aligned bases to conduct in-depth, non-attributional focus groups with aircrews of that airframe.

Led by a team of senior aviators with a breadth of experience across both Air Force and commercial aircraft (many are Reserve Airmen that also fly with commercial airlines), the EATF hopes to gain a better understanding of how crews perceive fuel efficiency efforts, and glean insight about the challenges pilots and maintainers face in their daily operations that may inhibit them from exercising efficiency best practices when the mission allows.



Operational energy challenges and solutions are now an active part of Air Force wargaming due to an Air Force Operational Energy initiative. In 2017, our office became involved in the planning and development of the Air Force’s Title 10 Wargame series, which led to our active role in Global Engagement 2018, Global Mobility/Agile Combat Support 2018, Long Duration Logistics Wargame 2018, and Futures Game 2019.

Our participation – along with support from aligned organizations such as Naval Postgraduate School, Headquarters Air Force Logistics (A4) and Plans (A5), Air Force Petroleum Office (AFPET), Defense Logistics Agency - Energy, Office of the Secretary of Defense for Operational Energy, and industry partners – enabled unprecedented incorporation of the fuel supply chain (from refinery to aerial tanker) into the 2018 wargaming campaign and highlighted the key role operational energy plays for combat operations at bases and beyond.

Ultimately, our goal is to facilitate better understanding of logistical challenges and to drive energy-informed leadership decisions in wargaming - and ultimately in basing strategy and investment priorities.

Introduced light-weight parts into operations to reduce aircraft weight

Aircraft weight is a key aspect of fuel burn, so the heavier the aircraft, the more fuel it takes to fly it. Air Force Operational Energy is exploring a number of avenues to reduce weight, and therefore fuel burn, on aircraft.

In 2018, we initiated a project to replace heavy metal chains with lightweight synthetic tiedowns and winch cables on the C-17, reducing aircraft weight by approximately 1,000 pounds per aircraft. The synthetic cables and tiedowns are just as strong as the metal chains they are replacing, far easier to handle (reducing load time and workload), while also being safer for Airmen as they are less likely to recoil dangerously. The cable is now cataloged as a part number and has transitioned to fleet use, while the tiedowns are in the final phases of development before fielding.

Another of our projects has worked to replace legacy aluminum honeycomb air inlets with lightweight composite RAM Air Inlet system for the C-5M Super Galaxy, which are 19 percent lighter and cost almost $100,000 less per part to manufacture. The composite parts have met all tests for strength and durability, and have a greater corrosion resistance, increasing part life and aircraft availability while reducing maintenance costs. The new inlets have transitioned to operational use and will replace the aluminum parts on an attrition basis.

Aerial Refueling Planning Software - Jigsaw

Jigsaw, an innovative software to streamline aerial refueling scheduling in the 609th Combined Operations Center (CAOC), has cut planning time while optimizing fuel use. Created by Defense Innovation Unit (DIU) using an agile development methodology, the tool has already increased tanker scheduling efficiency by 3.6 percent, reduced fuel use by 180k gallons weekly, and reduced global manning requirements by 9 crews since its rollout in June 2017.

Our office understands the value of the tool and are contributing to its improvement and sustainment. In August 2018, we initiated a 32 week effort in collaboration with the AOC Pathfinder team to develop an auto-planning feature called Pythagoras that matches requests with tankers to optimize tanker utilization (subject to constraints and planner judgment). Pythagoras is expected to increase scheduling efficiency by over 10 percent.

Collaborating with AFIT for an Energy-Informed Culture

In 2018, our office funded the development of two graduate courses at the Air Force Institute of Technology (AFIT), Department of Systems Engineering and Management. The two courses, Aviation Energy Systems Engineering and Contingency Base Energy Systems Engineering, will be offered for the first time in the spring of 2019. The collaborative effort to develop these courses has ensured that operational energy is at the center of lectures and research efforts, and is a significant step toward the office’s goal of educating the Force and building an operational energy-aware culture.

Updated max range airspeed policy resulting in optimized operations

Due to an optimization initiative led by our office, policy has been put into place that directs planners to plan airspeeds for 5th generation fighter Coronet missions at closer to maximum range airspeed. The faster speed decreases overall fuel consumption by about 6 percent, and reduces flight hours by about 10 percent.  After a successful demonstration with F-22s at the end 2017, our office continued working with ACC and AMC in 2018 to formalize the procedures and expanded them to include the F-35.


Mr. Roberto Guerrero
Deputy Assistant Secretary
Operational Energy 

Stay Connected

Facebook Twitter
#DYK we're working w/ @AFResearchLab to upgrade the #MQ9 engine, which would increase efficiency, giving it greater… https://t.co/tIRCBpXuI0
RT @HQ_AFMC: #Breaking: Today @SecAFOfficial released the new @usairforce Science and Technology Strategy outlining the vision and directio…
"It not only saves fuel, but it's safer…" Learn about the optimization initiative Capt Shelly Palmer is working on… https://t.co/rRaTXRdRrp
RT @HQ_AFMC: Have a revolutionary #innovative idea for the #AirForce future? The @AFResearchLab Air Force Office of Scientific Research is…
When your dog is the first to welcome you back…#NationalPetDay https://t.co/XhQE1o9MKO
"We're working to get more #innovative 21st century tools into the @usairforce to improve readiness and fuel optimi… https://t.co/I46WdgXAVi
"Through our data initiatives, we found that inefficient aviation fuel use was having a negative effect on… https://t.co/GEY0YSDF8J
Maj Cade Collins, @AirMobilityCmd Operational Energy Analyst and #KC135 Navigator, tells us about an initiative he… https://t.co/7mrKqf717R
@JasonRedd76 @usairforce The C-17, 1 of the @usairforce's largest &most frequently used aircraft, consumes the most… https://t.co/PeznzomMoX
@JasonRedd76 @usairforce Your first guess was the right guess!
#DYK what @usairforce aircraft consumes the most aviation fuel (in total gallons per year)? #TriviaTuesday https://t.co/uyRLzHvw8f
"By planning and flying more efficiently, we can increase our range, decrease aircraft engine wear and tear, increa… https://t.co/vMUbf9c8Yb
RT @DeptofDefense: Today is Gold Star Spouses Day, a time to honor the husbands and wives of fallen service members who keep their loved on…
RT @AirMobilityCmd: Congratulations to this week's winner of our #FeatureFriday contest! Master Sgt. Paul Blazewick III, whose last name is…
#DYK that optimizing how we use aviation fuel can help us become more combat capable? For example, the tanker pla… https://t.co/ZITLhNiSkl
RT @NATO: Twelve Allies founded #NATO in 1949. Today we are 29. Join us in celebrating the 70th Anniversary of our Alliance. #WeAreNATO htt…